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Abstract

In this research, an improved binary material-classification algorithm is devel-

oped to discriminate between metals and dielectrics using passive polarimetric im-

agery degraded by atmospheric turbulence. The technique implements a modified

version of an existing polarimetric blind-deconvolution algorithm in order to remove

atmospheric distortion and correctly classify the unknown object. The classification

decision is based on degree of linear polarization (DoLP) estimates provided by the

blind-deconvolution algorithm augmented with two DoLP priors—one statistically

modeling the polarization behavior of metals and the other statistically modeling the

polarization behavior of dielectrics. The proposed algorithm significantly improves

upon a similar published polarimetric classification method by adaptively updating

the DoLP priors as more information becomes available about the scene.

Three approaches for implementing the adaptive DoLP priors are presented—

the higher-order super-Gaussian method, the Gaussian method, and the distribution-

averaging method. The higher-order super-Gaussian method fits the distribution of

the in-progress DoLP estimates from the blind-deconvolution algorithm with a sum

of two super-Gaussian functions. The results of the nonlinear fit are then used to

form the DoLP priors. The Gaussian method fits the distribution of DoLP estimates

with the sum of two Gaussian functions to compute a classification threshold value.

The resulting threshold is then used to update the DoLP priors. The distribution-

averaging method approximates the threshold value by finding the mean of the DoLP

distribution. Using this threshold value, the DoLP priors are then formed. The

proposed technique is experimentally validated by comparing classification results of

a dielectric and metallic sample obtained using the new method to those obtained

using the existing approach. The experimental results confirm that the new adap-

tive method significantly extends the range of validity of the existing polarimetric
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classification technique to near-normal collection geometries where most polarimetric

material classifiers perform poorly.
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Binary Classification of an Unknown Object

through Atmospheric Turbulence Using a Polarimetric

Blind-Deconvolution Algorithm Augmented

with Adaptive Degree of Linear Polarization Priors

I. Introduction

Polarization is one of the fundamental properties of light along with irradiance,

wavelength, and coherence [6]. When scattered light is reflected from an object,

its polarization signature provides information about surface features, shape, shading,

and roughness [20,26]. Since human activities often change material surface features,

thus affecting the polarization signature of reflected light, polarimetric imaging has

emerged as a powerful tool to enhance understanding of an underlying scene of inter-

est. For example, using polarimetric imagery, Wolff presented a material-classification

model to accurately discriminate between a dielectric and a metal based on the po-

larimetric differences in reflecting light at their surfaces [27]. This relatively new

polarimetric imaging field has a variety of applications ranging from remote sensing

to industrial machine vision systems [26,27].

Remote sensing refers to the process of acquiring information about an object

without physical contact with the object. Remote sensing can be categorized as active

or passive depending on the nature of the illumination source. In passive remote

sensing, the source of illumination is not controlled, e.g., the sun. An application

example of passive remote sensing is the detection of hazardous industrial or warfare

chemical agents [2]. On the other hand, active remote sensing uses a controlled source

to illuminate the object of interest. Ranging systems such as radio detection and

ranging (RADAR) and laser detection and ranging (LADAR) are common examples

of active remote sensing systems.
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The use of polarimetric imagery has increased the capabilities of passive remote

sensing systems, as polarization reveals information largely uncorrelated with spectral

and irradiance images [22, 26]. For example, Goudail et al. presented polarimetric

image processing techniques which show that polarimetric images can improve target

detection and segmentation in remote sensing [9]. In addition to Wolff’s early work

in polarization-based material classification, Thilak et al. introduced a polarization-

based approach to estimate the complex index of refraction for characterizing the

materials comprising an object [22]. Other studies in material classification are found

in [24,28].

Recently, Hyde developed a variant of the polarimetric blind-deconvolution al-

gorithm presented in [15] for classifying the material of an unknown object using po-

larimetric imagery degraded by atmospheric turbulence [11]. In his algorithm, prior

knowledge about the sought degree of linear polarization (DoLP), called the DoLP

prior, serves to classify an object as a metal or a dielectric. Hyde’s algorithm, how-

ever, suffers when classifying an object at near-normal collection geometries because

of the weak manner in which natural materials polarize light in these conditions. The

purpose of this thesis is to present and develop methods to alleviate this limitation.

1.1 Goals

The purpose of this research is to develop an algorithm, somewhat invariant with

respect to collection geometry, to discriminate between metals and dielectrics using

polarimetric imagery degraded by atmospheric turbulence. The quality of polarimet-

ric information collected by a camera highly relies on geometry. The proposed method

enhances the poor performance of the previously developed material-classification al-

gorithm for near-normal collection geometries by adaptively updating the DoLP priors

of a metal and a dielectric as more information about the target scene becomes avail-

able. The method first recovers the target scene from a set of degraded polarimetric

images using the blind-deconvolution technique. Applying the updated DoLP priors,

the method then discriminates between metals and dielectrics.

2



1.2 Assumptions

In order to implement the proposed material-classification algorithm, the fol-

lowing assumptions are made about the passive polarimetric remote sensing scenarios

modeled in this research.

First, the unknown object in the target scene is assumed to be illuminated with

a randomly polarized natural light source, e.g., the sun. Several studies have shown

that the circular polarization component of light reflected from an object illuminated

with a natural light source is negligible [4, 16, 23]. Thus only the linear components

of polarization, i.e., the Stokes parameters S0, S1, and S2, are considered throughout

this research.

Secondly, polarimetric imagery is assumed to be collected in the specular plane.

The specular plane is determined by the directions of the incident and reflected light,

following the simple geometry of reflection from a smooth (or mirror-like) surface [27].

In passive polarimetry, the angle of polarization (AoP) provides information about

the object geometry, and observation made in the specular plane implies that the

AoP is zero [11]. As a result, the AoP is not considered in this research, but should

be considered in future research on this topic.

The final assumption is that the atmospheric turbulence is relatively weak. In

the observation plane, weak atmospheric turbulence randomly changes the light’s

phase but not its irradiance [7]. Strong atmospheric turbulence, on the other hand,

causes phase and irradiance fluctuations, commonly called scintillation [1]. The algo-

rithm presented in this research is designed to correct phase aberrations of degraded

images and therefore is only applicable to weak atmospheric turbulence. This is not

a very restrictive assumption considering that the light in this analysis is assumed to

be spatially incoherent (see assumption 1).

3



1.3 Thesis Outline

This thesis consists of five chapters including the introduction. Chapter II pro-

vides the theoretical background necessary to understand the development of the

material-classification algorithm. The chapter starts with an explanation of polar-

ization and imaging through atmospheric turbulence. A description of the blind-

deconvolution method is then followed by a review of the material-classification al-

gorithm in its current form. Chapter III provides detailed descriptions of the novel

methods for adaptively updating the DoLP priors in order to alleviate the afore-

mentioned limitation of collection geometry. Chapter IV presents the results of the

proposed method using polarimetric imagery obtained at a near-normal collection

geometry. Finally, Chapter V summarizes the findings of this research and presents

possible topics for future studies.
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II. Background

This chapter provides the background necessary for understanding the polari-

metric blind-deconvolution algorithm used for material classification. A brief

overview of polarization, incoherent imaging, atmospheric turbulence, and blind de-

convolution is presented.

2.1 Polarization

2.1.1 Polarization State. Polarization simply describes the orientation of the

electric field. The electric field E(z, t) at any location z and time t can be represented

by two orthogonal vector components, i.e.,

E(z, t) = Ex(z, t) + Ey(z, t) (2.1)

where

Ex(z, t) = E0x cos(ωt− kz)

Ey(z, t) = E0y cos(ωt− kz − ε)
. (2.2)

Here, E0x and E0y are the x− and y−component amplitudes, ω is the angular fre-

quency, k is the wavenumber, and ε is the relative phase difference between the vector

components [10,20]. Equation (2.2) leads to

(
Ey

E0y

)2

+

(
Ex

E0x

)2

− 2

(
Ex

E0x

)(
Ey

E0y

)
cos ε = sin2ε, (2.3)

which describes an ellipse rotated through an angle ψ as shown in Fig. 2.1 [10]. The

angle ψ is called the AoP and is expressed as [20]

tan 2ψ =
2E0xE0y

E2
0x − E2

0y

cos ε. (2.4)

When the relative phase difference ε = ±π/2,±3π/2,±5π/2, . . . , Eq. (2.3) reduces to
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E0x 

E0y 

Figure 2.1: Illustration of the polarization ellipse rotated through angle ψ.

(
Ey

E0y

)2

+

(
Ex

E0x

)2

= 1, (2.5)

which describes an ellipse in which the major and minor axes are aligned with the x

and y axes. The resultant electric field vector E(z, t) will appear to rotate and change

its amplitude as it propagates. Light in this state is called elliptically polarized light.

Elliptical polarization is the most general polarization state of light.

In the case that the x− and y−component amplitudes are equal, i.e., E0x =

E0y = E0, Eq. (2.5) further reduces to

(Ey)
2 + (Ex)

2 = E2
0 (2.6)

yielding circularly polarized light [10]. If the relative phase difference ε = 0,±π,±2π, . . . ,

Eq. (2.3) becomes

Ey = ±E0y

E0x

E0x, (2.7)
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which is the equation of a line with slope ±E0y/E0x. Light in this state is called

linearly polarized light [10].

2.1.2 Stokes Vectors and Mueller Matrices. One problem with modeling

polarization using the polarization ellipse formulation is that it is limited to scenarios

involving fully polarized light. Stokes vectors overcome this limitation by describing

polarization in terms of observable quantities, namely, optical power or irradiance [20].

By taking time averages of the electric field vector components, Eq. (2.3) can be shown

to yield

S2
0 = S2

1 + S2
2 + S2

3 , (2.8)

where

S0 = E2
0x + E2

0y

S1 = E2
0x − E2

0y

S2 = 2E0xE0y cos ε

S3 = 2E0xE0y sin ε

. (2.9)

The parameter S0 is the total irradiance. The parameter S1 is the difference in the

irradiance of light passed by a horizontal linear polarizer and a vertical linear polarizer.

If S1 = 0, light may be linearly or elliptically polarized at ±45◦, circularly polarized,

or unpolarized [10]. The parameter S2 is the difference in the irradiance of light passed

by a linear polarizer at +45◦ and a linear polarizer at −45◦. Finally, the parameter S3

is the difference in the irradiance of light passed by a right-handed circular polarizer

and a left-handed circular polarizer. The Stokes parameters are often represented in

a normalized column vector as

S = S0

[
1 S1/S0 S2/S0 S3/S0

]T
. (2.10)
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The Mueller matrix is a 4 × 4 matrix which models the polarization effects of

an optical interaction [20]. It relates the Stokes vector incident on an optical element

Sin to the Stokes vector leaving the element Sout as

Sout = MSin
Sout
0

Sout
1

Sout
2

Sout
3

 =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33




Sin
0

Sin
1

Sin
2

Sin
3


(2.11)

where M is the Mueller matrix of the optical element [20]. For example, the polar-

ization effect on light passing through an ideal linear polarizer oriented at an angle θ

from the horizontal is expressed as

Sout = MθS
in

Sout
0

Sout
1

Sout
2

Sout
3

 =
1

2


1 cos 2θ sin 2θ 0

cos 2θ cos22θ sin 2θ cos 2θ 0

sin 2θ sin 2θ cos 2θ sin22θ 0

0 0 0 0




Sin
0

Sin
1

Sin
2

Sin
3



=
1

2


Sin
0 + Sin

1 cos 2θ + Sin
2 sin 2θ

Sin
0 cos 2θ + Sin

1 cos
22θ + Sin

2 sin 2θ cos 2θ

Sin
0 sin 2θ + Sin

1 sin 2θ cos 2θ + Sin
2 sin

22θ

0



. (2.12)

Since incident light is filtered through a linear polarizer, Eq. (2.12) shows that the S3

component of the output Stokes vector (the term describing the amount of circularly

polarized light) is zero. The total irradiance passed by the linear polarizer is contained

in the S0 component of the output Stokes vector. Therefore, the irradiance I(θ)

measured by a detector with an ideal polarizer oriented at an angle θ is given by

8



I(θ) = Sout
0 =

1

2
(Sin

0 + Sin
1 cos 2θ + Sin

2 sin 2θ). (2.13)

Equation (2.13) is an important result and used in the polarimetric blind-deconvolution

algorithm discussed in Section 2.5.

As mentioned in Chapter 1, it is assumed that the contribution from circular

polarization is not significant in this research. Therefore, the full Stokes vector can be

simplified to the linear-polarization-state Stokes vector, eliminating the parameter S3

whose value is approximately zero for the cases of interest here. The AoP ψ introduced

in Eq. (2.4) can be expressed in terms of the Stokes parameters as [20]

tan 2ψ =
2E0xE0y

E2
0x − E2

0y

cos ε =
S2

S1

. (2.14)

Like the AoP, the DoLP can be obtained from knowledge of the Stokes parameters

as well:

DoLP =
Ipol
Itot

=

√
S2
1 + S2

2

S0

(2.15)

where Ipol is the linearly polarized light irradiance and Itot is the total irradiance. Its

range is between 0, i.e., randomly or unpolarized state, and 1, fully polarized.

2.2 Imaging

2.2.1 Incoherent Imaging. Incoherent illumination implies that each spatial

point on the object field is statistically independent of all other points [18]. In the

case of incoherent imaging, the image irradiance i(x, y) can be found by convolving

the object irradiance o(x, y) and the irradiance impulse response of the optical path

of interest, also known as the point spread function (PSF) |h(x, y)|2:

i(x, y) =

∫ ∫ ∞

−∞
|h(x− u, y − v)|2o(u, v)dudv (2.16)

9



where (x, y) defines an image plane coordinate and (u, v) defines an object/target

plane coordinate. Note that because of the nature of imaging (u, v) and (x, y) are

typically related by the magnification M . Without loss of generality, unit magnifica-

tion is assumed in all analysis to follow. Taking the Fourier transform of Eq. (2.16)

gives the equivalent relationship of incoherent imaging in the spatial-frequency domain

as

I(fx, fy) = H(fx, fy)O(fx, fy) (2.17)

where I(fx, fy),O(fx, fy), and H(fx, fy) are the Fourier transforms of i(x, y), o(x, y),

and |h(x, y)|2, respectively, and (fx, fy) is the spatial-frequency coordinate correspond-

ing to the image-plane coordinate (x, y) [8]. Normalizing H(fx, fy) by its value at zero

frequency yields the function H [8]:

H(fx, fy) =

∫ ∫∞
−∞ |h (x, y)|2 exp[−j2π(fxx+ fyy)]dxdy∫ ∫∞

−∞ |h (x, y)|2dxdy
. (2.18)

The function H is called the optical transfer function (OTF), and its modulus |H| is

referred to as the modulation transfer function (MTF), commonly used to characterize

imaging systems.

2.2.2 The OTF of a Diffraction-Limited Incoherent Imaging System. An

optical system is said to be diffraction limited if an image is limited in quality only by

diffraction, not by imperfections in the imaging system [8]. The OTF of a diffraction-

limited incoherent imaging system with a circular aperture of diameter D is given

by [8]

H(ρ) =


2

π

cos−1

(
ρ

2ρ0

)
−
(

ρ

2ρ0

)√
1−

(
ρ

2ρ0

)2
 if ρ ≤ 2ρ0

0 otherwise

, (2.19)
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where ρ0 is the cutoff frequency of a coherent imaging system of focal length f and

wavelength λ, i.e.,

ρ0 =
D

2λf
. (2.20)

The range of the radial distance ρ =
√
f 2
x + f 2

y in Eq. (2.19) indicates that an incoher-

ent imaging system extends the cutoff frequency to twice that of a coherent imaging

system [8].

2.2.3 Atmospheric Turbulence. Atmospheric turbulence is predominantly

caused by temperature fluctuations in the atmosphere resulting from differential heat-

ing and cooling of Earth’s surface by the sun [18]. These temperature fluctuations

cause spatial and temporal fluctuations in the index of refraction of the atmosphere

resulting in random spatial and temporal variations in optical path length (OPL) ex-

perienced by transiting light [18]. These OPL variations manifest phase aberrations

in the optical wavefront as the light propagates through the atmosphere. These phase

aberrations add another layer of distortion in addition to the imaging system. As a

result, the quality of received images is degraded and the resolution of the imaging

system is reduced.

2.2.4 Imaging through Turbulence. The instantaneous PSF and its OTF

through atmospheric turbulence are random due to the stochastic nature of the atmo-

sphere, as described above [18]. Physical meaning can only be gleaned by inspection

of the average PSF and its Fourier transform, the average OTF. To see how atmo-

spheric phase aberrations are modeled using the OTF H, Eq. (2.18) is first expressed

in a different form [7,8]:

H(fx, fy) =

∫ ∫∞
−∞H(x, y)H∗(x− λffx, y − λffy)dxdy∫ ∫∞

−∞ |H (x, y)|2dxdy
. (2.21)

Here, the function H represents a modified aperture function, i.e.,
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H(x, y) = P (x, y)t(x, y) (2.22)

where P (x, y) is the classic aperture apodization function and t(x, y) is the complex

transmittance given by

t(x, y) = exp[jθ(x, y)]. (2.23)

In Eq. (2.23), θ(x, y) represents the random phase induced by the atmosphere [7].

Substituting Eq. (2.22) into Eq. (2.21) yields an expression for the instantaneous

OTF of an imaging system including atmospheric effects Hsys [7]:

Hsys(fx, fy) =

∫ ∫∞
−∞ P (x, y)P ∗(x− λffx, y − λffy)t(x, y)t

∗(x− λffx, y − λffy)dxdy∫ ∫∞
−∞ |P (x, y)|2dxdy

.

(2.24)

The average OTF of the imaging system H̄sys(fx, fy) is computed by taking the

expectation of Eq. (2.24) yielding

H̄sys(fx, fy) =

∫ ∫∞
−∞ P (x, y)P ∗(x− λffx, y − λffy)E [t(x, y)t∗(x− λffx, y − λffy)] dxdy∫ ∫∞

−∞ |P (x, y)|2dxdy
.

(2.25)

Equation (2.25) can be written as

H̄sys(fx, fy) = HO (fx, fy) H̄S (fx, fy) , (2.26)

where HO(fx, fy) is the OTF of a diffraction-limited system and H̄S(fx, fy) represents

the average OTF of the induced random phase [7]. Two types of the average OTF

are discussed in this section—long-exposure and short-exposure OTFs.
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Long-exposure imaging is imaging performed over a long integration time. Be-

cause of the long integration time, many instances/realizations of atmospheric turbu-

lence are captured in the resulting image. The long-exposure OTF of the atmosphere

was derived by Fried as

H̄LE (ρ) = exp

[
−3.44

(
λfρ

r0

)]
(2.27)

where r0 is the atmospheric coherence diameter [19]. The atmospheric coherence

diameter describes the largest effective aperture diameter for image resolution. For a

plane wave source, r0 can be computed as

r0,pw =

[
0.423k2

∫ L

0

C2
n(z)dz

]−3/5

(2.28)

where C2
n is the refractive-index structure parameter, which is a measure of the tur-

bulence strength, and L is the propagation distance [19].

Short-exposure imaging is imaging performed over a short integration time. In

short-exposure imaging, only a single instance of atmospheric turbulence is captured

in the image thus effectively freezing the effects of the atmosphere [18]. The key differ-

ence between short-exposure and long-exposure imaging is that images taken using a

short exposure are not distorted by wavefront tilt which has the effect of broadening

the PSF (or equivalently narrowing the OTF) in the long-exposure case [18]. The

short-exposure OTF of the atmosphere is given by

H̄SE (ρ) = exp

{
−3.44

(
λfρ

r0

)5/3[
1− α

(
λfρ

D

)]1/3}
(2.29)

where α is 1/2 or 1 when scintillation is or is not present, respectively [19]. Note

that H̄SE reduces to H̄LE by setting α = 0. Figure 2.2 illustrates how atmospheric

turbulence corrupts an image and reduces the resolution of an imaging system as

compared to the diffraction-limited case.
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(a) True object (b) Instantaneous short−exposure PSF (c) Long−exposure PSF

(d) Diffraction−limited image (e) Instantaneous short−exposure image (f) Long−exposure image

Figure 2.2: Effect of atmospheric turbulence on imaging.

2.3 Blind Deconvolution

Blind deconvolution refers to the process of estimating the true object and

the PSF from degraded images with no or partial information about the imaging

system or object [14]. Blind deconvolution has applications in various fields including

optics, astronomy, signal processing, and seismology. There exist many methods to

solve the blind-deconvolution problem, such as zeros sheet separation, a priori blur

identification, parametric estimation, etc. [14]. Among these approaches, the most

relevant to this thesis is the maximum-likelihood (ML) estimation method, which is

a parametric estimation technique. ML blind-deconvolution algorithms developed by

Schultz and LeMaster and Cain will be summarized here after a brief review of ML

estimation.
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2.3.1 Maximum-Likelihood Estimation. The ML method solves a blind-

deconvolution problem by estimating the parameter set θ = [θ1, θ2, . . . , θN ]
T of a

distribution X based on the observed data x = [x1, x2, . . . , xN ]
T drawn according

to the distribution X [17]. An estimate of the parameters is made to maximize the

probability or likelihood of observing data x given the parameter set θ [14]. Let

f(x|θ) be the conditional probability density function (PDF) of the distribution X

given the parameter set θ [17]. The ML estimate of θ is then

θ̂ml = arg
{
max

θ
lx(θ)

}
= arg

{
max

θ
f(x|θ)

}
, (2.30)

where lx(θ) denotes the likelihood function [14]. Since most distributions of engineer-

ing interest belong to the exponential family such as Gaussian, Rayleigh, Poisson, etc.,

the logarithm of the likelihood function is often utilized in Eq. (2.30) [17]. Note that

the logarithm is a monotone function, thus maximizing the log-likelihood function is

equivalent to maximizing the likelihood [17]:

L(θ) = log lx(θ) = log f(x|θ). (2.31)

2.3.2 Expectation-Maximization Algorithm. The expectation-maximization

(EM) algorithm is an iterative algorithm to produce ML estimates of the parameter

set θ. In the EM algorithm, the observed/measured data y = [y1, y2, . . . , yN ]
T , termed

the incomplete data, is mapped to a new set of data x = [x1, x2, . . . , xN ]
T , termed the

complete data, where the ML estimation problem is more easily solved [21]. Note that

the complete data x are not observed directly and thus do not need to have a physical

meaning. They only need to be statistically consistent with the incomplete data y [15].

The idea behind the EM algorithm is that even though the complete data specification

is not known, making use of the underlying distribution log[f(x|θ)], an estimate of

θ can be determined [17]. Obtaining this estimate θ̂ml is a nonlinear optimization

problem of several variables [14]. Among various implementation methods, the EM
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algorithm is the most popular for its simplicity and computational efficiency [14].

The EM algorithm converts the nonlinear optimization problem into a simpler linear

iterative procedure, making implementation straightforward.

The goal of the EM algorithm is to find the parameter set θ which maximizes

the log-likelihood log[f(x|θ)] [17]. Recall that the complete data x are not directly

observed and thus it is not possible to compute the log-likelihood of x directly [17].

Instead, the EM algorithm maximizes the expectation of log[f(x|θ)] given the incom-

plete data y and the current estimate of the parameter set θ [17]. The expectation

step (the first step of the EM algorithm) computes this conditional expectation, i.e.,

Q(θ|θk) = E
[
log f(x|θ)|y,θk

]
(2.32)

where Q(θ|θk) is called the objective function and θk represents the estimate of θ

after k iterations [17]. Once the objective function Q is defined, the maximization

step (the second step of the EM algorithm) provides a new estimate of the parameter

set θk+1 by maximizing Q [17],

θk+1 = arg
{
max

θ
Q(θ|θk)

}
. (2.33)

The EM algorithm starts with choosing an initial θ estimate and then is iterated until

convergence or a stopping criterion is met.

2.4 Multiframe Blind-Deconvolution

Unconstrained ML estimation, discussed in Section 2.3, can converge to a trivial

solution, namely, the object is estimated as a point source and the PSF is estimated

as the measured data. This estimate needs to be avoided because it provides no infor-

mation about the true object [21]. Schulz introduces two techniques for performing

ML blind deconvolution of a sequence of short-exposure images while avoiding the

trivial solution [21]. The first method, penalized ML estimation, adds a penalty term
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to the original log-likelihood function so that point-source-like object estimates are

penalized [21]. The second proposed method, which is applicable to this research,

performs ML blind deconvolution using a parameterized form of the PSF [21]. This

approach is described in more detail below.

Let o(x) and hk(y|x) denote the object’s irradiance and the PSF for the kth

short-exposure image, respectively. The coordinate x = (x1, x2) defines a point in the

object/target plane; the coordinate y = (y1, y2) defines a point in the image plane

[11,21]. Assuming discretized object and image plane regions, the ideal irradiance in

the kth frame is

ik(y; o, hk) =
∑
x

hk(y|x)o(x). (2.34)

This ideal irradiance is never actually measured. What is actually detected

is a noise-degraded version of ik. The assumption of this algorithm and the other

blind-deconvolution algorithms to follow is that shot noise is the dominant noise

source degrading ik. Let dk(y) be defined as the data detected at location y in the

kth frame where ik(y; o, hk) = E[dk(y)]. Since shot noise is Poisson distributed, the

log-likelihood L(o, h) becomes

L(o, h) =
∑
k

[
−
∑
y

ik(y; o, hk) +
∑
y

dk(y) ln ik(y; o, hk)

]
(2.35)

after eliminating terms that do not affect the maximization [21]. The PSF is param-

eterized by phase errors over the aperture as

hk(y|x;αk, θk) = αkg(y − x; θk), (2.36)

where
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g(x; θk) =

∣∣∣∣∣∑
u

A(u) exp [iθk(u)] exp(−i2πκu · x)

∣∣∣∣∣
2

, (2.37)

A(u) is the aperture function, u denotes a spatial coordinate pair in the pupil plane,

αk is the gain of the kth PSF, θk models the phase aberrations caused by atmospheric

turbulence or the image system in the kth frame, and κ is a scaling constant between

pupil-plane and image-plane coordinates [21].

The EM algorithm is then used to optimize estimates of the object irradiance

and the parameters αk, θk. Substitution of Eqs. (2.34) and (2.36) into Eq. (2.35), the

log likelihood becomes

L(o, h) = −
∑
k

∑
y

∑
x

αkg(y − x; θk)o(x) +
∑
k

∑
y

dk(y) lnαk

+
∑
k

∑
y

dk(y) ln

[∑
x

g(y − x; θk)o(x)

] . (2.38)

The ML estimate of αk can be obtained by differentiating Eq. (2.38) with respect to

αk and setting the derivative to zero [21]. The resulting estimate α̂k is

α̂k = Dk/G, (2.39)

where Dk =
∑

y dk(y) and G =
∑

x g(x; θk) [21]. The update equations for the object

irradiance o(x) and the phase parameter θk are derived by applying the method of

Lagrange multipliers and the Gerchberg-Saxton algorithm, respectively:

onew(x) = D−1oold(x)
∑
k

∑
y

α̂kg(y − x; θoldk )

ik(y; oold, holdk )
dk (y) (2.40)

and
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θnewk (u) =


θ̃(u) if

∑
x

ξ(x; θoldk ) ln g(x; θ̃) ≥
∑
x

ξ(x; θoldk ) ln g(x; θoldk )

θoldk (u) else

, (2.41)

where

θ̃(u) = phase
(
F−1
u

{√
ξ(x; θoldk ) exp

[
iphase

{
g̃(x; θoldk )

}]})
ξ(x; θoldk ) = g(x; θoldk )

[∑
y

oold (y − x)

ik(y; oold, holdk )
dk(y)

]
g̃(x; θoldk ) = Fx

{
A(u) exp

[
iθoldk (u)

]} . (2.42)

Here, Fx denotes a discrete Fourier transform [21]. Figure 2.3 depicts the ML estima-

tion results using Schulz’s algorithm just described. The first row of Fig. 2.3 is the

true object. The second row shows the two short-exposure PSFs used in this simula-

tion (D/r0 = 20). The third row contains the detected images, which are corrupted

by atmospheric turbulence and simulated shot noise (signal-to-noise ratio (SNR) =
√
1000). The fourth row is the estimated object after 200 iterations. The signifi-

cance of the result is that the object estimate clearly indicates two distinct objects of

different sizes. On the contrary, this information is partly lost in the detected images.

2.5 Multichannel Blind Deconvolution of Polarimetric Imagery

Recently, LeMaster and Cain developed a polarimetric version of Schulz’s polar-

ization insensitive algorithm. In their study, the linear polarization state is considered,

and the images, measured by detectors at different polarization orientations (chan-

nels), are fused to provide polarimetric information about the scene, namely estimates

of the AoP as well as estimates of the object and the channel PSFs [15].
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Figure 2.3: ML estimation results using Schulz’s parameterized-PSF blind-
deconvolution algorithm. The first row is the true object. The second row contains
the two short-exposure PSFs used in this simulation (D/r0 = 20). The third row
shows the detected images (SNR =

√
1000). The fourth row is the estimated object

after 200 iterations.

As reviewed in Section 2.1.2, the irradiance measured at a detector with a linear

polarizer orientated at angle θ is given by

I(θ) =
1

2
(S0 + S1 cos 2θ + S2 sin 2θ) (2.43)
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where

S1 = PS0 cos 2α

S2 = PS0 sin 2α
. (2.44)

Here, α is the AoP and P is the DoLP. Substitution of Eq. (2.44) into Eq. (2.43) and

subsequent simplification yields

oc(x) =
1

2
λu(x) + λp(x)cos

2 (α(x)− θc) . (2.45)

where λu = (1−P )S0 and λp = PS0 represent the unpolarized and polarized compo-

nents of the scene, respectively [15]. Given the PSF hc and the object irradiance oc,

the ideal irradiance ic is

ic(y) =
∑
x

oc(x)hc(y − x). (2.46)

As in Schulz’s algorithm, the incomplete data dc(y) denote the number of pho-

tons at location y in polarization channel c. Each dc is subsequently split into polar-

ized and unpolarized components d̃pc(y,x) and d̃uc(y,x), which in accordance with

the dictates of the EM algorithm become the complete data:

dc(y) =
∑
x

d̃uc(y,x) +
∑
x

d̃pc(y,x) (2.47)

where

E[d̃pc(y,x)] =
1

2
λu(x)

E[d̃uc(y,x)] = λp(x)cos
2 (α(x)− θc)

. (2.48)

Substituting Eqs. (2.45)–(2.47) into Eq. (2.35), the complete data log-likelihood func-

tion LCD becomes [15]
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LCD(λu, λp, α, h) =
∑
c

∑
y

∑
x

{
d̃uc (y,x) ln

[
1
2
λu(x)hc (y − x)

]
− 1

2
λu(x)hc (y − x)

}
+
∑
c

∑
y

∑
x

{
d̃pc (y,x) ln [λp(x)cos

2(α(x)− θc)hc (y − x)]

−λp(x)cos2(α(x)− θc)hc (y − x)}

.

(2.49)

Update equations for the sought parameters are obtained by calculating the

conditional expectation of LCD (expectation step) and maximizing the resulting ex-

pression for λu(x), λp(x), α(x), and hc(y|x). The resulting update equations for the

polarization components λu and λp at pixel x0 are [15]

λn+1
k (x0) =

2

C

∑
c

∑
y

ψn+1
kc (y,x0), (2.50)

where k refers to either u or p for the unpolarized or polarized component, respectively,

C is the number of channels, and

ψn+1
pc (y,x) =

dc(y)

inc (y)
λnp (x)cos

2(αn(x)− θc)h
n
c (y − x)

ψn+1
uc (y,x) =

1

2

dc(y)

inc (y)
λu(x)hc (y − x)

. (2.51)

The AoP estimate is [15]

αn+1 (x0) =
1

2
tan−1S

n+1
2 (x0)

Sn+1
1 (x0)

. (2.52)

Finally, the PSF is estimated according to the update equations introduced by Schulz

[Eqs. (2.36), (2.37), (2.41), and (2.42)], where the gain αk is set to unity such that

hk(y|x;αk, θk) = g(y − x; θk). (2.53)
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(a) Object (b) Unpolarized (c) Polarized

(d) PSF

(e) Measured S
0 (h) Estimated Unpolarized (i) Estimated Polarized

Figure 2.4: ML estimation results using three-channel (0◦, 60◦, 120◦) polarimetric
imagery. The first row contains the true object and its unpolarized and polarized
components. The second row depicts the simulated short-exposure PSF (D/r0 = 20).
Shown in the third row are the “measured” S0 (SNR =

√
1000), and the estimated

unpolarized and polarized components of the scene after 200 iterations of LeMaster
and Cain’s algorithm

Figure 2.4 depicts estimation results using simulated polarimetric imagery col-

lected using three polarimetric channels. The analyzers in the three channels are

oriented at 0◦, 60◦, and 120◦. The target scene has two objects—one fully polarized

and the other unpolarized, as shown in the first row of Fig. 2.4. These objects are

imaged through atmospheric turbulence whose short-exposure PSF (D/r0 = 20) is
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shown in the second row. The third row contains the “measured” S0 with SNR =
√
1000. Also shown in the third row are the unpolarized and polarized components

of the scene estimated after 200 iterations. Note that the object and its polarimetric

content are fully recovered.

2.6 Classifying the Material of an Unknown Object with DoLP Priors

This section reviews a material classification method using degraded polari-

metric imagery introduced by Hyde. Using a variant of the polarimetric ML blind-

deconvolution algorithm developed by LeMaster and Cain, Hyde estimates the true

object’s irradiance S0, the DoLP, the AoP, and the PSF [11]. Unlike LeMaster and

Cain, Hyde adds prior knowledge about the sought DoLP estimate, called the DoLP

prior, into his algorithm to serve as a means to classify the unknown object. This

DoLP prior distribution is simply referred to as the prior hereafter. Hyde introduces

two priors—one representing dielectric materials and the other representing metallic

materials. These priors are discussed in more detail in the next section. It should

be noted that by introducing prior information about the sought parameters into the

log-likelihood function, the problem changes from being an ML estimation problem

to a maximum a posteriori (MAP) problem. Since MAP estimation is very similar

in nature to ML estimation (previously reviewed), MAP estimation is not reviewed

here. The interested reader is referred to Refs. [25] and [3] for more information.

2.6.1 DOLP Priors. Hyde adds two DoLP priors into his algorithm to

classify dielectric and metallic materials [11,12]. To formulate these priors, he predicts

the DoLPs of dielectrics and metals using a polarimetric bidirectional reflectance

distribution function (pBRDF) [11]. These pBRDF results show that dielectric and

metal DoLPs are uniformly distributed within certain nearly exclusive ranges [11]. He

approximates the non-differentiable uniform distribution using a continuous super-

Gaussian distribution as
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Figure 2.5: DoLP priors modeled with a super-Gaussian distribution. The con-
stants in Eq. (2.54) are c = 1, α = 7.2, β = 0.15, m = 10 for the metal DoLP prior
and c = 1, α = 3.1, β = 0.65, m = 10 for the dielectric DoLP prior [11].

Π(P ) = c exp {−[α(P − β)]m} , (2.54)

where P denotes the DoLP, c is a normalizing constant to ensure that Π(P ) integrates

to one, α is a constant equivalent to the variance for the super-Gaussian distribution, β

is a constant which controls the center of the distribution, andm is an even integer [11].

Figure 2.5 depicts the DoLP priors used by Hyde in [11].

The new complete-data log-likelihood function incorporating the DoLP prior is

L(P, S0, α, h) =
∑
c

∑
y

∑
x

{
d̃uc(y,x) ln

[
1

2
(1− P )S0hc (y − x)

]
−1

2
(1− P )S0hc (y − x)

}
+
∑
c

∑
y

∑
x

{
d̃pc(y,x) ln

[
PS0cos

2(α(x)− θc)

×hc (y − x)] −PS0cos
2(α(x)− θc)hc (y − x)

}
+
∑
c

∑
y

∑
x

ln [Π(P )]

(2.55)
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where d̃uc(y,x) and d̃pc(y,x) are the incomplete data as defined in Eq. (2.47) [11]. In

Hyde’s algorithm, the AoP α(x) is assumed to be zero, which implies that observation

is made in the specular plane [11].

As in Schulz’s and LeMaster and Cain’s algorithms, Hyde employs the EM

algorithm to find estimates of the desired parameters P, S0, α, and hc. The outcome

of the expectation step is the objective function Q which is [11]:

Qn+1(P, S0, α, h) =
∑
c

∑
y

∑
x

{
E
[
d̃uc(y,x)

]
ln

[
1

2
(1− P n)Sn

0 h
n
c (y − x)

]
−1

2
(1− P n)Sn

0 h
n
c (y − x)

}
+
∑
c

∑
y

∑
x

{
E
[
d̃pc(y,x)

]
ln
[
P nSn

0 cos
2(αn(x)− θc)

×hnc (y − x)] −P nSn
0 cos

2(αn(x)− θc)h
n
c (y − x)

}
+
∑
c

∑
y

∑
x

ln [Π(P n)]

.

(2.56)

Differentiating Q with respect to P, S0, α, and hc and setting the derivatives equal to

zero yield the update equations

0 = P (1− P )
∑
c

∑
y

1

Π(P )

dΠ(P )

dP

−P
∑
c

∑
y

(
ψn+1
uc (y,x) + ψn+1

pc (y,x)
)
+
∑
c

∑
y

ψn+1
pc (y,x)

S0 =
2

C

∑
c

∑
y

(
ψn+1
uc (y,x) + ψn+1

pc (y,x)
)

0 =
∑
c

∑
y

ψn+1
pc tan(α(x)− θc)

hc (z) =
1

Dc

∑
y

[
ψn+1
uc (y,y − z) + ψn+1

pc (y,y − z)
]

. (2.57)

where
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ψn+1
uc (y,x) = E

[
d̃uc(y,x)|dc, P n, Sn

0 , α
n, hnc

]
=

1

2

dc
inc
(1− P n)Sn

0 h
n
c

ψn+1
pc (y,x) = E

[
d̃pc(y,x)|dc, P n, Sn

0 , α
n, hnc

]
=
dc
inc
P nSn

0 cos
2(αn − θc)h

n
c

, (2.58)

z = y− x, and Dc =
∑

ydc(y) [11]. The channel PSF hc(z) is estimated according to

Schulz’s parameterized PSF technique introduced in Section 2.4. Applying the DoLP

prior model Π(P ) in Eq. (2.54) to the DoLP update equation in the first row of Eq.

(2.57) yields a DoLP update equation of the form [11]

0 = mαmP 2(P − β)m−1 −mαmP (P − β)m−1

−P
∑
c

∑
y

[
ψn+1
uc (y,x) + ψn+1

pc (y,x)
]
+
∑
c

∑
y

ψn+1
pc (y,x)

. (2.59)

To classify each pixel, two sets of estimates for the parameters P, S0, and h are

computed from Eq. (2.57), given the metal and dielectric priors [11]. These two sets

of estimates are then substituted into the objective function Q which is simplified

in Eq. (3.1) using Eqs. (2.56) and (2.58). Whichever set of estimates maximizes Q

classifies that pixel either as a metal or as a dielectric.

Figure 2.6 depicts the recovery of the target scene from turbulence-degraded

(D/r0 = 20) images using four polarimetric channels, i.e., θ = 0◦, 45◦, 90◦, 135◦. The

first row of the figure is the true target scene, which consists of an object composed of

metallic and dielectric components. The portions of the object with the lower DoLP

P = 0.2 represent metallic components; the portions with the higher DoLP P = 0.7

represents dielectric components. The “measured” S0 (SNR =
√
1000) and DoLP are

shown in the second row. The third row contains the estimates of the scene, applying

the update equations in Eq. (2.57), after 200 iterations. Figure 2.7 shows the material

classification results, incorporating Hyde’s metal and dielectric DoLP priors. As Figs.

2.6 and 2.7 indicate, the algorithm successfully recovers and classifies the target scene.
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Figure 2.6: Estimation results using four-channel (0◦, 45◦, 90◦, 135◦) polarimetric
imagery. The top row is the true target scene. The second row shows measurements
(SNR =

√
1000) degraded by atmospheric turbulence (D/r0 = 20). The third row

contains the final estimation results after 200 iterations.

2.6.2 Limitations. In Hyde’s algorithm, fixed DoLP priors are used to clas-

sify the unknown object. A key limitation of this approach lies in the fact that natural

materials weakly polarize scattered light at near-normal incident angles [11]. As a re-

sult, the images collected at near-normal geometries (θi, θr = 24◦ in Hyde’s paper) are

poorly classified by his material-classification algorithm [11]. Hyde suggests that this
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Figure 2.7: Binary material classification of an unknown object (red = metal, blue
= dielectric).

limitation can be alleviated by adaptively updating the DoLP priors as more infor-

mation becomes available about the scene [11]. Chapter III presents a methodology

to implement the adaptive DoLP priors suggested by Hyde and represents the main

theoretical thrust of this research.
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III. Research Methodology

This chapter describes a methodology to implement a polarization-based material-

classification algorithm incorporating adaptive DoLP priors. The process in-

volves updating the DoLP priors by inspecting the distribution of DoLP estimates to

enhance classification results at near-normal collection geometries.

3.1 Material Classification

The material-classification algorithm introduced by Hyde classifies the materi-

als of an unknown object using polarimetric imagery degraded by the atmosphere.

Incorporated in his algorithm are DoLP priors of a metal and a dielectric. The clas-

sification is made by comparing the values of the objective function Q of each DoLP

estimate as described in Section 2.6.1.

Given the metal and dielectric DoLP priors, the first update equation in Eq. (2.57)

produces two DoLP estimates P . To compute the value of Q for each material class,

these DoLP estimates are substituted into Eq. (3.1), which is obtained from Eqs.

(2.56) and (2.58), along with the estimates of the remaining parameters S0, hc, and

ic:

Qn+1(P, S0, α, h) =
[
χn
est,u ln

(
χn+1
prior,u

)
+ χn

est,p ln
(
χn+1
prior,p

)]
×
∑
c

∑
y

[
dc(y)

inc (y)
hnc (y − x0)

]
+
(
χn
est,u + χn

est,p

)∑
c

∑
y

{
dc(y)

inc (y)
hnc (y − x0)

× ln [hn+1
c (y − x0)]} − C

(
χn
est,u + χn

est,p

) (3.1)

where

χn
est,u =

1

2
[1− P n(x0)]S

n
0 (x0)

χn
est,p = P n(x0)S

n
0 (x0)cos

2 [αn(x0)− θc]

χn+1
prior,u =

1

2

[
1− P n+1

prior(x0)
]
Sn+1
0 (x0)

χn+1
prior,p = P n+1

prior(x0)S
n+1
0 (x0)cos

2 [αn+1(x0)− θc]

. (3.2)
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In Eq. (3.2), the subscripts n and n + 1 indicate estimates at the nth (previous)

and (n+ 1)th (current) iterations, P n(x0) is the previous DoLP estimate at pixel x0,

P n+1
prior(x0) is the current DoLP estimate at x0 computed using the metal or dielectric

DoLP prior, and C is the total number of polarization channels. The DoLP estimate

(either the estimate using the metal DoLP prior or the estimate using the dielectric

DoLP prior) which maximizes Q determines whether the material is classified as a

metal or a dielectric at pixel x0:

material at x0=

 metal Qd(x0)−Qm(x0) ≤ 0

dielectric else
(3.3)

where Qd(x0) and Qm(x0) denote the Q values using the dielectric and the metal

DoLP priors at pixel x0, respectively [11].

3.2 Adaptive DoLP Priors

Section 2.6.2 mentions that natural materials weakly polarize scattered light at

near-normal incident angles. This causes Hyde’s material-classification algorithm to

perform poorly at near-normal collection geometries [11]. Figure 3.1 depicts the prob-

ability distributions of the measured DoLP at incident angles θi = 50◦ and θi = 24◦.

The target scene consists of metal and dielectric parts. The probability distribution

at θi = 50◦ is consistent with Hyde’s DoLP priors shown in Fig. 2.5. Contrast this

with the distribution shown in Fig. 3.1(b). The range of DoLP values observed in the

θi = 24◦ case is approximately 1/4 of the θi = 50◦ case, which demostrates the main

limitation of Hyde’s implementation. The threshold between the metal and dielectric

DoLP values at the θi = 24◦ geometry becomes so low that Hyde’s fixed DoLP prior

models are not able to accurately classify materials in this scenario. Hyde suggests

that this limitation can be alleviated by adaptively updating the DoLP priors as more

information about the scene becomes available [11]. The following sections introduce

three novel approaches to implement adaptive DoLP priors, termed hereafter higher-

order super-Gaussian method, Gaussian method, and distribution-averaging method.
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Figure 3.1: (a) Distribution of measured DoLP at θi = 50◦. (b) Distribution of
measured DoLP at θi = 24◦.

3.2.1 Higher-Order Super-Gaussian Method. Hyde’s pBRDF study finds

that the DoLP is best modeled as a uniform probability density between 0 and 1

because of numerous uncontrollable factors such as observation geometry and surface

state [11]. In order to derive the DoLP update equations in Eq. (2.59), the uniform

distribution of the DoLP prior needs to be modeled with a differentiable distribution

for which a continuous super-Gaussian distribution in Eq. (2.54) is chosen [11].

In the higher-order super-Gaussian method, the sum of two super-Gaussian

distributions is fit to the estimated DoLP distribution. The fit function is of the form

Π(P ) = cme
−[am(P−bm)]m + cde

−[ad(P−bd)]
m

, (3.4)

where the coefficients cm and cd are normalizing factors, am and ad determine the

widths of the super-Gaussians, bm and bd determine the centers of the super-Gaussians,

and m is the order [11,13]. The subscripts m and d represent a metal and a dielectric,

respectively. Figure 3.2(a) shows the resulting fit of Eq. (3.4) with the estimated

DoLP distribution at θi = 24◦. Figure 3.2(b) shows the resulting adaptive DoLP
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Figure 3.2: Higher-order super-Gaussian method for adaptive DoLP priors. (a)
Distribution of DoLP measurements and the fit of Eq. (3.4) when m = 10. (b) Metal
and dielectric priors formed from fit. The constants in Eq. (3.4) determined by the
fit are cm = 1, am = 64.3, bm = 0.0195 and cd = 1, ad = 13.7, bd = 0.104.

priors obtained from the fit shown in Fig. 3.2(a). The obtained coefficients are then

substituted into the update equation in Eq. (2.59) to compute the metal and dielectric

DoLP estimates. The pixel is then classified using Eq. (3.3).

This approach is analytically sound, but has a major drawback. Figure 3.2 re-

veals that the higher-order super-Gaussian fitting and the prior-formation processes

generate a threshold which is significantly lower than the one empirically observed in

the DoLP distribution. As will be shown, this drawback leads to significant classifi-

cation errors.

3.2.2 Gaussian method. Equation (2.15) states that the DoLP is the ratio

of the linearly polarized irradiance to the total irradiance. Thus, assuming that shot

noise is the dominant noise source, DoLP measurements observed at a given collection

geometry and surface state should follow the random variable distribution formed by

dividing two Poisson random variables. Unfortunately, no analytical form exists for

this PDF. Figure 3.3 shows a PDF of this distribution obtained via Monte Carlo
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Figure 3.3: PDF of the division of two Poisson random variables using Monte
Carlo analysis. The plot shows the PDF of DoLP measurements of a target whose
true DoLP is 0.5 (SNR =

√
1000).

analysis. The figure shows the distribution of DoLP measurements of a target whose

true DoLP is 0.5 (SNR =
√
1000). Note that the DoLP PDF is very Gaussian-like.

Based on this finding, it seems much more reasonable to fit the sum of two Gaussian

functions to the estimated DoLP distribution than it does super-Gaussians. Thus, in

the Gaussian method,

Π(P ) = cme
−[am(P−bm)]2 + cde

−[ad(P−bd)]
2

(3.5)

is fit to the measured DoLP PDF.

Fig. 3.4(a) shows the result of this fit for DoLP measurements at θi = 24◦. The

figure shows that the Gaussian fit models DoLP measurements more accurately than

super-Gaussian fit depicted in Fig. 3.2(a). This Gaussian fit provides the threshold

between a metal and a dielectric from which the DoLP priors can be built. As

mentioned in the previous section, the super-Gaussian distribution is chosen to model

the uniform distribution of the overall DoLP. In order to compute the coefficients

in Eq. (3.4) necessary to model the updated DoLP priors using the super-Gaussian

distribution, the threshold between the two materials are determined by finding the
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Figure 3.4: Gaussian method for adaptive DoLP priors. (a) Distribution of DoLP
measurements and the fit of Eq. (3.5). (b) Metal and dielectric priors formed from fit.
The constants in Eq. (3.5) determined by the fit are cm = 1, am = 34.5, bm = 0.0315
and cd = 1, ad = 2.32, bd = 0.532.

minimum between the two maxima of the Gaussian fit (marked in Fig. 3.4(a)). The

center of each prior is then obtained by computing the midpoint between the threshold

and the DoLP values of 0 and 1. Given the threshold and the center of a prior, the

coefficient a is computed using Eq. (2.54), i.e.,

a =
[− lnΠ(Pth)]

1/m

(Pth − b)
(3.6)

where Pth is the DoLP value at the threshold and Π(Pth) is a user-chosen quantity. In

this analysis, its value is chosen to be 0.01. Figure 3.4(b) shows the updated DoLP

priors with the coefficients computed as described.

3.2.3 Distribution-Averaging Method. The final method investigated for

adaptively updating the DoLP priors is to approximate the threshold by finding the

mean of the measured DoLP distribution. It has been found empirically that the

mean of the distribution lies approximately at the intersection (or threshold) of the
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Figure 3.5: Distribution-averaging method for adaptive DoLP priors. (a) Distribu-
tion of DoLP measurements and the calculated mean. (b) Updated DoLP priors. The
constants in Eq. (3.4) determined by the mean are cm = 1, am = 45.4, bm = 0.0257
and cd = 1, ad = 2.46, bd = 0.109.

two “humps” of the DoLP distribution. In order to update the DoLP priors, the

coefficients of the super-Gaussian distribution in Eq. (3.4) are computed from the

threshold and the DoLP values of 0 and 1, using the same process as in the Gaussian

method. Figure 3.5(b) shows the resulting metal and dielectric DoLP priors.

3.3 Algorithm Execution

Figure 3.6 outlines a flow of the proposed material-classification algorithm at

the ith iteration. The number of iterations before forming the priors and classifying

the object is determined by comparing the DoLP estimates (obtained using standard

LeMaster and Cain deconvolution) to the DoLP obtained from turbulence-free polari-

metric images. The root mean squared error (RMSE) of DoLP estimates in Fig. 3.7(a)

indicates that the DoLP estimate is optimized at about 50 iterations. Thus, on the

51st iteration, the DoLP priors are updated using one of three techniques developed

in this chapter and the binary classification of the objects in the scene commences.
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Figure 3.6: Flowchart of the proposed material-classification algorithm augmented
with adaptive DoLP priors at the ith iteration.

The stopping criterion for the algorithm is decided based on the S0 estimation

results. Shown in Fig. 3.7(b) is the RMSE of the S0 estimation where the irradiance

of the object measured without atmospheric turbulence is considered the true object

irradiance. Note that the turbulence-free images do contain static aberrations due

to the imperfect imaging system. This explains why the S0 RMSE increases with
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Figure 3.7: (a) RMSE of DoLP to determine the iteration number to update
DoLP priors. (b) RMSE of S0 to determine the stopping criterion for the material-
classification algorithm.

the number of iterations before converging. Based on the observation that the S0

estimation stagnates after 300 iterations, the entire algorithm is stopped after 300

iterations.
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IV. Results and Analisys

This chapter presents results of the material-classification algorithm introduced

in Chapter 3. Section 4.1 describes the experimental design and procedures.

Sections 4.2 and 4.3 discuss classification results of the algorithm using fixed and

adaptive DoLP priors. A spatial error analysis of the results is also presented in

Section 4.4.

4.1 Experimental Setup

The images analyzed in this research were collected by Hyde using a Stokes

polarimeter in the Optical Turbulence Estimation, Compensation, and Simulation

laboratory at the Air Force Institute of Technology. Figure 4.1 shows the instrument,

which consists of three main sections. The source/sample section consists of two

optical rotation stages. The lower rotation stage holds the sample while the upper

rotation stage, which is placed on the top of the lower rotation stage, holds the 1550

nm light emitting diode source. These two stages are rotated in combination to yield

any θi + θr ≥ 48◦ where θi and θr denote the incident and reflected angles, respec-

tively. Aluminum and steel samples are partially painted to simulate a target scene

Polarizer/CameraPolarizer/Camera

1550 nm LED

Turbulence Simulator

Phase Wheel

1550 nm LED

Sample Holder

Samples

Figure 4.1: Photograph of the Stokes polarimeter used to collect the polarimetric
imagery in this experiment [11].
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consisting of metal and dielectric parts. The atmospheric turbulence simulator section

of the instrument models various atmospheric turbulence conditions by changing the

location of a phase wheel. Atmospheric turbulence conditions used in this research

are D/r0 ≈ 7.9, 10.5, and 12.9. The last section of the instrument is the polarimetric

imager which includes an imaging lens (pupil size of 25 mm), a rotating linear polar-

izer, and a digital camera whose array size is 250 × 316 with a pixel pitch of 30µm.

For more details about the experimental setup, the reader is referred to [11].

In order to implement the proposed material-classification algorithm, the Stokes

parameters S0, S1, and S2 are extracted from four polarimetric images (θc = 0◦, 45◦,

90◦, 135◦). Dark-frame images were collected and subtracted from the polarimetric

images before computing the Stokes parameters. The original images of size 250 ×

316 are padded to size 512 × 512 and then spatially windowed using a Tukey window

to prevent “ringing” caused by the fast Fourier transforms used in the algorithm.

The algorithm starts with choosing initial estimates of the sought parameters—

P , S0, and the PSF hc. The initial estimates of P and S0 are 512 × 512 arrays of

1/2 and 1, respectively. The initial estimate of hc is formed from a randomly drawn

atmospheric phase screen (D/r0 = 10) with piston and tilt removed.

4.2 Classification Results—Fixed DoLP Priors

Figure 4.2 shows results of the material-classification algorithm with Hyde’s

DoLP priors for the painted aluminum target after 300 iterations. The atmospheric

turbulence condition and the collection geometry are D/r0 ≈ 7.9 and θi = θr = 50◦,

respectively. Figures 4.2(a), (d), and (g) show S0 images of no-turbulence, turbulence-

degraded, and estimated data, respectively. The experimental P results are shown in

Figs. 4.2(b), (e), and (h). The threshold of P = 0.3 is chosen to discriminate between

a metal (P < 0.3) and a dielectric (P ≥ 0.3) for the no-turbulence and turbulence-

degraded results. This threshold value is the intersection of the two DoLP priors as

shown in Fig. 2.5. The corresponding material-classification results are shown in Figs.

4.2(c), (f), and (i). As indicated by Hyde’s previous research, the estimated classifi-
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Figure 4.2: Results of Hyde’s material-classification algorithm for the painted alu-
minum target (D/r0 ≈ 7.9 and θi = θr = 50◦). For the no-turbulence and the
turbulence-degraded measurements, P ≥ 0.3 is classified as a dielectric and P < 0.3
as a metal. The estimated classification result is based on the metal and dielectric
DoLP priors developed by Hyde and reviewed in Section 2.6.1. In the classification
results, the blue color implies dielectric and the red color implies metal. The final
estimates are obtained after 300 iterations.

cation result in Fig. 4.2(i) reveals that the algorithm not only accurately classifies the

object but also recovers details of the target scene lost by atmospheric turbulence,

evident in the estimated P result.

Figure 4.3, on the other hand, illustrates the limitation of the algorithm using

fixed DoLP priors for near-normal collection geometries (θi = θr = 24◦ in this case).

The threshold of P = 0.08 is chosen from the histogram of the DoLP measurements

in Fig. 3.1(b) to discriminate between a metal (P < 0.08) and a dielectric (P ≥ 0.08)
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Figure 4.3: Results of Hyde’s material-classification algorithm for the painted alu-
minum target (D/r0 ≈ 7.9 and θi = θr = 24◦). For the no-turbulence and the
turbulence-degraded measurements, P ≥ 0.08 is classified as a dielectric and P < 0.08
as a metal. The estimated classification result is based on the metal and dielectric
DoLP priors developed by Hyde and reviewed in Section 2.6.1. In the classification
results, the blue color implies dielectric and the red color implies metal. The final
estimates are obtained after 300 iterations.

for the no-turbulence and turbulence-degraded data. To demonstrate the limitation

of the algorithm in this near-normal geometry, the DoLP priors developed by Hyde

and reviewed in Section 2.6.1 are incorporated into the algorithm for material classi-

fication. The estimated classification result in Fig. 4.3(i) confirms the predicted poor

performance of the algorithm for near-normal collection geometries.
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4.3 Classification Results—Adaptive DoLP Priors

In order to alleviate the near-normal collection geometry limitation of the fixed-

prior material-classification algorithm, the DoLP priors should be updated as more

information about the target scene becomes available. The following sections present

classification results of the three DoLP prior update methods developed in Chapter III.

4.3.1 Higher-Order Super-Gaussian Method. Figure 4.4 shows results of

the material-classification using adaptive DoLP priors updated by the higher-order

super-Gaussian method discussed in Section 3.2.1. The same images of the painted

aluminum target (D/r0 ≈ 7.9, θi = θr = 24◦) in Fig. 4.3 are used for the proposed

method. In order to classify the no-turbulence and the turbulence-degraded measure-

ments, the threshold value is computed by fitting the distribution of each DoLP mea-

surement with the higher-order super-Gaussian function as described in Section 3.2.1.

The resulting thresholds of P = 0.0618 and P = 0.0464 are then applied to classify

the no-turbulence and the turbulence-degraded data, respectively.

The estimated classification result using the updated DoLP priors is shown

in Fig. 4.4(i). Note that the figure depicts only a few pixels correctly classified as

metal. Figure 4.4(i) indicates that the algorithm with DoLP priors updated by the

higher-order super-Gaussian method performs as poorly as the algorithm with fixed

DoLP priors shown in Fig. 4.3(i). As mentioned in Section 3.2.1, the higher-order

super-Gaussian method yields a lower threshold than the one empirically observed in

the measured DoLP distribution. This causes the incorrect dielectric over classifica-

tion. Although the estimated classification result of the higher-order super-Gaussian

method is poor, the blind-deconvolution algorithm still produces S0 and P estimates

with recovered details lost in the turbulence-degraded images.

4.3.2 Gaussian Method. Figure 4.5 shows results of the material-classification

algorithm using DoLP priors adaptively updated by the Gaussian method discussed

in Section 3.2.2. The images of the target and the layout of the figure are identical to
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Figure 4.4: Results of the material-classification algorithm using adaptive DoLP
priors derived from the higher-order super-Gaussian method for the painted aluminum
target (θi = θr = 24◦ and D/r0 ≈ 7.9). The thresholds for classifying the no-
turbulence and the turbulence-degraded measurements are P = 0.0618 and P =
0.0464, respectively. The estimated classification result is based on the metal and
dielectric DoLP priors adaptively updated by the higher-order super-Gaussian method
discussed in Section 3.2.1. In the classification results, the blue color implies dielectric
and the red color implies metal. The final estimates are obtained after 300 iterations.

the previous results. Similar to the higher-order super-Gaussian method, to classify

the no-turbulence and the turbulence-degraded images, the threshold is computed

by fitting the distribution of the DoLP measurements with the Gaussian function as

described in Section 3.2.2. The resulting thresholds are P = 0.0932 and P = 0.0747

for the no-turbulence and turbulence-degraded data, respectively.
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Figure 4.5: Results of the material-classification algorithm using adaptive DoLP pri-
ors derived from the Gaussian method for the painted aluminum target (θi = θr = 24◦

and D/r0 ≈ 7.9). The thresholds for classifying the no-turbulence and the turbulence-
degraded measurements are P = 0.0932 and P = 0.0747, respectively. The estimated
classification result is based on the metal and dielectric DoLP priors adaptively up-
dated by the Gaussian method discussed in Section 3.2.2. In the classification results,
the blue color implies dielectric and the red color implies metal. The final estimates
are obtained after 300 iterations.

Figure 4.5(i) shows that the algorithm using adaptive priors updated by the

Gaussian method accurately classifies the target scene. Shown in Fig. 4.5(h) is the

estimated P result. Note the clear contrast between the two material types which

comprise the target scene. This result is a clear validation of this approach.

The estimated S0 result is similar to the result of the previous method. Although

the S0 result seems to recover features lost in the turbulence-degraded images, it is dif-

ficult to objectively quantify this observation because of the aberrated no-turbulence
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Figure 4.6: Results of the material-classification algorithm using adaptive DoLP
priors derived from the distribution-averaging method for the painted aluminum tar-
get (θi = θr = 24◦ and D/r0 ≈ 7.9). The thresholds for classifying the no-turbulence
and the turbulence-degraded measurements are P = 0.1223 and P = 0.0651, respec-
tively. The estimated classification result is based on the metal and dielectric DoLP
priors adaptively updated by the distribution-averaging method discussed in Section
3.2.3. In the classification results, the blue color implies dielectric and the red color
implies metal. The final estimates are obtained after 300 iterations.

images. As Section 3.3 briefly mentions, the no-turbulence images which are consid-

ered “truth” in this research for the basis of comparison do contain static imaging

aberrations.

4.3.3 Distribution-Averaging Method. Figure 4.6 shows results of the material-

classification algorithm using the distribution-averaging method developed in Sec-

tion 3.2.3. The images of the target and the layout of the figure are identical to those
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of the previous results. To classify the no-turbulence and the turbulence-degraded

data, the threshold is computed by finding the mean of the distribution of the DoLP

measurements. The corresponding thresholds are P = 0.1223 and P = 0.0651 for the

no-turbulence and the turbulence-degraded data, respectively.

The estimated classification result in Fig. 4.6(i) shows that DoLP priors updated

by the distribution-averaging method significantly improve the performance of the

fixed-threshold based algorithm at the tested near-normal collection geometry. Per-

formance is similar to the previously analyzed Gaussian method with some instances

of misclassification occurring along the metal/dielectric boundaries. This may be an

acceptable trade-off considering the computational simplicity of this technique.

Like the Gaussian method result, the estimated P result in Fig. 4.6(h) displays

a clear contrast between the two material classes with features recovered after being

lost in the turbulence-degraded images. The estimated S0 result does not display any

noticeable differences from the S0 estimation results of the previous methods. Over-

all, the distribution-averaging method yields good results for such a computationally

simplistic technique.

4.4 Spatial Analysis of the Classification Results

Table 4.1 summarizes the material-classification results of the three proposed

methods for the painted aluminum target at the near-normal collection geometry

tested in this experiment. The table reports the results for three atmospheric turbu-

lence conditions (D/r0 ≈ 7.9, 10.5, and 12.9). The first column indicates the method

applied to update the DoLP priors. The second column indicates the image being

analyzed, either turbulence-degraded (Turb.) or estimated (Est.) images. The last

two columns contain the RMSE and the correlation coefficient of the classification

results.
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Table 4.1: Material-classification results for the painted aluminum target at θi =
θr = 24◦

Adaptive Method Image D/r0 RMSE Corr. Coeff.

Higher-Order
Super-Gaussian
Method

Turb. 7.9 0.575 0.336
Est. 7.9 0.730 0.0337
Turb. 10.5 0.581 0.306
Est. 10.5 0.733 0.0080
Turb. 12.9 0.595 0.286
Est. 12.9 0.734 0.0095

Gaussian
Method

Turb. 7.9 0.396 0.562
Est. 7.9 0.391 0.573
Turb. 10.5 0.399 0.555
Est. 10.5 0.396 0.563
Turb. 12.9 0.405 0.542
Est. 12.9 0.409 0.534

Distribution-
Averaging
Method

Turb. 7.9 0.369 0.536
Est. 7.9 0.376 0.529
Turb. 10.5 0.383 0.514
Est. 10.5 0.388 0.509
Turb. 12.9 0.398 0.491
Est. 12.9 0.393 0.498

The nearly-zero correlation coefficients of the higher-order super-Gaussian method

in Table 4.1 conclusively show that this technique fails to accurately classify the target

for the reason discussed previously.

The Gaussian method, whose computed threshold is the best approximation to

empirical data among the three methods, shows slightly improved performance over

the classification using turbulence-degraded images. These improvements, however,

are quantitatively too minimal to validate the proposed algorithm. Thus, in order to

evaluate the validity of the algorithm properly, it needs to be understood that the

no-turbulence images (“truth”) contain static aberrations as previously mentioned.

These aberrations penalize the estimated classification result when computing the

RMSE and the correlation coefficient because the algorithm corrects these aberra-
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tions as qualitatively shown in Figs. 4.5(h) and (i). Despite marginal quantitative

improvements, the estimated P and classification results shown in Figs. 4.5(h) and (i)

clearly depict that the Gaussian method classifies the target with greater accuracy

than the turbulence-degraded images. Further analysis using no-turbulence images

whose static aberrations are removed may provide more relevant image metrics for

quantitative study of the classification results.

The metric results of the distribution-averaging method are similar to those of

the Gaussian method in that improvements in performance increase as atmospheric

turbulence becomes weaker (D/r0 decreases). Unlike the Gaussian update tech-

nique, however, the distribution-averaging method yields classification results which

are quantitatively worse than the turbulence-degraded results. For the same rea-

son discussed above, it can still be concluded that the distribution-averaging method

improves the classification over the turbulence-degraded result based on Figs. 4.6(h)

and (i). Note that Table 4.1 indicates that the Gaussian method provides results some-

what better than the distribution-averaging method. Considering the computational

simplicity of the latter update technique, relatively small differences in performance

may be an acceptable trade-off as suggested in Section 4.3.3.

49



V. Conclusions and Future Work

5.1 Conclusions

In this thesis, a binary material-classification algorithm augmented with adap-

tive DoLP priors is developed for improved performance at near-normal collection

geometries. The algorithm is based on Hyde’s material-classification technique which

utilized fixed DoLP priors. Hyde’s algorithm used a variant of the multichannel blind-

deconvolution technique developed by LeMaster and Cain to estimate S0, P , and hc

from polarimetric imagery degraded by atmospheric turbulence. To discriminate be-

tween metals and dielectrics, DoLP estimates from the blind-deconvolution results

of each DoLP prior are used to compute the corresponding values of the objective

function Q. Whichever DoLP prior maximizes Q determines the classification of the

target at a given pixel location. A key limitation of this algorithm arises from the

polarization behavior of light scattered from natural materials at near-normal collec-

tion geometries. The previously developed material-classification technique relied on

fixed-threshold DoLP priors which performed poorly for near-normal collection ge-

ometries. To alleviate this limitation in collection geometries, this research developed

methods to adaptively update the DoLP priors as more information about the scene

became available.

Three methods are investigated for performing this update. The first method,

called the higher-order super-Gaussian method, involves fitting the sum of two super-

Gaussian functions to the measured distribution of DoLP estimates. This method is

analytically sound, but suffers because the resulting fit poorly predicts the location of

the threshold empirically evident in the estimated DoLP distributions. This results in

misclassification of metal as dielectric at numerous pixels. The second method, called

the Gaussian method, fits the distribution of DoLP estimates with the sum of two

Gaussian functions. This approach is based on the observation that DoLP measure-

ments (at a given surface state and collection geometry) are equivalent to a Poisson

random variable divided by another Poisson random variable. This distribution has

no analytical form but is Gaussian-like. It is clearly shown that the Gaussian method
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computes the most accurate threshold. The last technique developed and analyzed in

this thesis is the distribution-averaging method. This method is based on an empirical

observation that the mean of the DoLP distribution approximately lies at the true

threshold value. This simple approach produces classification results which are signif-

icantly improved over the existing fixed-prior method. Both RMSE and correlation

coefficient calculations of experimental data confirm that the DoLP priors updated

by the Gaussian method and the distribution-averaging method produce accurate

classification results in the tested atmospheric turbulence conditions.

5.2 Future Work

5.2.1 Testing Collection Geometry Region of Validity. The first area of pos-

sible future work is to perform experiments on the proposed methods with collection

geometries θi, θr < 24◦. Even though the adaptive approach developed in this research

significantly extends the region of applicability of the algorithm beyond the existing

method, the algorithm will eventually fail because the polarization difference between

dielectrics and metals will become too small to be discerned. The collection geometry

range of validity for the proposed methods has not been confirmed empirically. Ex-

periments with collection geometries θi, θr < 24◦ will allow one to fully understand

the capabilities of the proposed techniques.

5.2.2 Field Testing. Next the proposed algorithm should be applied to a

real-world scenario by conducting field experiments. A compact polarimeter would

be needed for this purpose. Figure 5.1 depicts a polarization camera suitable for such

field testing, which is also referred to in Hyde’s research. This camera is a commercial

division of amplitude polarimeter with three polarization channels configured with 0◦,

45◦, and 90◦ linear polarizers to measure the Stokes parameters S0, S1, and S2.

5.2.3 Comparison of Material-Classification Results. There exist other

polarization-based material-classification techniques, such as Wolff’s polarization Fres-

nel ratio and Tominaga and Kimachi’s degree of polarization (DoP) map methods.

51



Figure 5.1: A three-channel polarization camera developed by FluxData, Inc. [5].

Wolff utilizes the Fresnel reflection coefficients to estimate the polarization Fresnel

ratio whose value is used to discriminate between metals and dielectrics [27]. Tomi-

naga and Kimachi estimate the DoP from the irradiance through a polarizer and use

the curvature of the DoP map to discriminate between the two material classes [24].

By comparing the results from these techniques, the relative accuracy/validity of the

proposed methods can be assessed.

5.2.4 Use of S0 Estimate to Aid Classification. One thing not used in

this research was the information contained in the S0 estimate. The rather obvious

observation that metals tend to scatter light more strongly than dielectrics could be

used to aid the polarization-based classification and extend the collection geometry

range of validity of the algorithm even further.

5.2.5 DoLP Derivative Classification. While DoLP varies significantly ver-

sus incidence/observation angle and surface state, the rate of change of the DoLP

remains fairly consistent over a wide range of conditions. Furthermore, the deriva-

tives of the DoLPs of metals and dielectrics are very distinct with metals having a

DoLP derivative of approximately zero and dielectrics having a large DoLP derivative

(especially versus incidence/observation angle). This trend holds even for very near-

normal collection geometries. For this approach to be implemented, the deconvolution
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algorithm must be reworked to estimate the derivative of the DoLP or measurements

at two slightly different observation angles need to be collected.

5.2.6 Diffraction-Limited Truth Images. The quantitative analysis of classi-

fication results shows that the no-turbulence (“truth”) images are of poor quality such

that improvements in estimates brought about by the proposed algorithm are not ev-

ident in the objective measures. Using “diffraction-limited” no-turbulence images as

truths may provide more relevant quantitative measures. This can be accomplished

in two ways. The first, of course, is to collect new polarimetric images. This is

now possible with the new polarimetric imager in the Optical Turbulence Estimation,

Compensation, and Simulation laboratory. This instrument unfortunately was un-

available for this thesis. The second is to deconvolve the no-turbulence images. This

was not done in this analysis to remain consistent with the algorithm comparison,

performed by Hyde in [11].
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